Skip to contents

The tidycensuskr package is designed for R users who want to work with South Korean census and administrative boundary data. It aims to provide an easy-to-use interface for population, housing, and socioeconomic statistics linked with geospatial boundaries.

Installation

You can install the released version of tidycensuskr from CRAN with:

# CRAN
install.packages("tidycensuskr")

# R-universe
install.packages("tidycensuskr", repos = "https://sigmafelix.r-universe.dev")

To install the development version, remotes::install_github() will suffice.

# Development version from GitHub
rlang::check_installed("remotes")
remotes::install_github("sigmafelix/tidycensuskr")

About the data

As of September 2025, this package contains two datasets: Census data (censuskor) and the corresponding geospatial data.

1. Census data

  • Sigungu dataset of three census years (2010, 2015, 2020)
    • The curated dataset is a long table (i.e., one row per district-year-variable)

anycensus()

  • The function anycensus() allows you to query census data for specific district or province codes and types of data (population, tax, mortality, economy, housing) for three census years (2010, 2015, 2020).
# loading Seoul population data
tidycensuskr::anycensus(codes = "Seoul", type = "population")
#> # A tibble: 25 × 17
#>     year adm1  adm1_code adm2          adm2_code type     all households_total…¹
#>    <dbl> <chr>     <dbl> <chr>             <dbl> <chr>                     <dbl>
#>  1  2020 Seoul        11 Dobong-gu         11100 populat…                 312878
#>  2  2020 Seoul        11 Dongdaemun-gu     11060 populat…                 332796
#>  3  2020 Seoul        11 Dongjak-gu        11200 populat…                 378749
#>  4  2020 Seoul        11 Eunpyeong-gu      11120 populat…                 458777
#>  5  2020 Seoul        11 Gangbuk-gu        11090 populat…                 295304
#>  6  2020 Seoul        11 Gangdong-gu       11250 populat…                 440022
#>  7  2020 Seoul        11 Gangnam-gu        11230 populat…                 509899
#>  8  2020 Seoul        11 Gangseo-gu        11160 populat…                 564114
#>  9  2020 Seoul        11 Geumcheon-gu      11180 populat…                 225594
#> 10  2020 Seoul        11 Guro-gu           11170 populat…                 394733
#> # ℹ 15 more rows
#> # ℹ abbreviated name: ¹​`all households_total_prs`
#> # ℹ 10 more variables: `all households_male_prs` <dbl>,
#> #   `all households_female_prs` <dbl>, fertility_total_brt <dbl>,
#> #   `fertility_15-19 (simulated)_bp1` <dbl>, `fertility_20-24_bp1` <dbl>,
#> #   `fertility_25-29_bp1` <dbl>, `fertility_30-34_bp1` <dbl>,
#> #   `fertility_35-39_bp1` <dbl>, `fertility_40-44_bp1` <dbl>, …

censuskor

  • The function data(censuskor) loads an attached dataset that contains the census data in long form. This dataset is automatically loaded upon loading the package.

2. Administrative boundaries

load_district()

  • The function load_district() allows you to get the Si-Gun-Gu level sf files for the three census years (2010, 2015, 2020).
  • The function requires the tidycensuskr.sf package to be installed. Please install it from R-universe using install.packages("tidycensuskr.sf", repos = "https://sigmafelix.r-universe.dev").
# loading boundary sf file: 2020 boundaries are included in this package
data(adm2_sf_2020)
# tidycensuskr.sf::load_districts(year = 2020)

Examples

Package vignettes are the first place to look for detailed examples. Below are some quick examples to get you started.

Simple map making

anycensus() will return an analysis-ready data.frame that can be easily merged with the corresponding boundary sf object from load_districts(). Here is a simple example of making maps with population data.

library(tidycensuskr)
#> tidycensuskr 0.2.6 (2025-12-09)
#> Please install the companion data package tidycensuskr.sf to use the district boundaries.
#> install.packages('tidycensuskr.sf', repos = 'https://sigmafelix.r-universe.dev')
library(ggplot2)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(tidyr)
library(sf)
#> Linking to GEOS 3.12.2, GDAL 3.11.4, PROJ 9.4.1; sf_use_s2() is TRUE
library(biscale)
library(cowplot)
sf_use_s2(FALSE)
#> Spherical geometry (s2) switched off
options(scipen = 100)

# load census data
census_pop_2020 <- anycensus(year = 2020, codes = NULL, type = "population")
#> Using character codes that are convertible to integers. Automatically converting to integers...
census_pop_2020 <- census_pop_2020 |>
  rename(population_total = `all households_total_prs`)

# load boundaries
data(adm2_sf_2020)
adm2_2020 <- adm2_sf_2020

# merge boundaries and census data
census_2020_sf <- adm2_2020 |>
  left_join(census_pop_2020, by = c("adm2_code" = "adm2_code"))

# plot population data
census_2020_pop <-
  ggplot(census_2020_sf) +
  geom_sf(aes(fill = population_total), color = "white", size = 0.1) +
  theme_minimal() +
  labs(
    title = "Population (2020)",
    fill = "Population"
  ) +
  theme(
    plot.title = element_text(size = 12),
    axis.text = element_text(size = 7),
    legend.text = element_text(size = 7),
    legend.title = element_text(size = 8)
  )

census_2020_pop

For Seoul Metropolitan Area (including Seoul, Incheon, and Gyeonggi-do), you can use a character vector in codes argument and merge the retrieved data.frame and sf object with inner_join():

census_pop_2020_sma <-
  anycensus(
    year = 2020,
    codes = c("Seoul", "Incheon", "Gyeonggi"),
    type = "population"
  ) |>
  rename(population_total = `all households_total_prs`)

census_2020_sf_sma <- adm2_2020 |>
  inner_join(census_pop_2020_sma, by = c("year", "adm2_code"))


# plot population data
census_2020_pop_sma <-
  ggplot(census_2020_sf_sma) +
  geom_sf(aes(fill = population_total), color = "white", size = 0.1) +
  theme_minimal() +
  labs(
    title = "Population in Seoul Metropolitan Area (2020)",
    fill = "Population"
  ) +
  theme(
    plot.title = element_text(size = 12),
    axis.text = element_text(size = 7),
    legend.text = element_text(size = 7),
    legend.title = element_text(size = 8)
  )

census_2020_pop_sma

Bivariate map

Moving on to a complex example, the code below demonstrates to generate a bivariate map with persons per housing unit and all-cause mortality rate.

census_housing_2020 <- anycensus(year = 2020, codes = NULL, type = "housing")
#> Using character codes that are convertible to integers. Automatically converting to integers...
census_housing_2020 <- census_housing_2020 |>
  rename(housing_total_units = `housing types_total_cnt`)
census_pop_housing_2020 <- census_pop_2020 |>
  left_join(census_housing_2020 |>
              select(adm2_code, housing_total_units),
            by = "adm2_code") |>
  transmute(
    adm2_code = adm2_code,
    persons_per_housing = population_total / housing_total_units
  )
census_mort_2020 <- anycensus(year = 2020, codes = NULL, type = "mortality")
#> Using character codes that are convertible to integers. Automatically converting to integers...
census_mort_2020 <- census_mort_2020 |>
  rename(mortality_total = `all causes_total_p1p`)

census_pph_mort_2020 <- census_pop_housing_2020 |>
  left_join(census_mort_2020 |>
              select(adm2_code, mortality_total),
            by = "adm2_code")

# merge boundaries and census data
census_2020_sf <- adm2_2020 |>
  left_join(census_pph_mort_2020, by = c("adm2_code" = "adm2_code"))
census_2020_mapbase <-
  biscale::bi_class(
    census_2020_sf,
    x = persons_per_housing,
    y = mortality_total,
    style = "quantile",
    dim = 3
  )

# draw a bivariate legend
legend <- bi_legend(pal = "DkCyan",
                    dim = 3,
                    xlab = "More Persons per Housing ",
                    ylab = "All-Cause Mortality ",
                    size = 6)

# plot population data
census_2020_bmap <-
  ggplot(census_2020_mapbase) +
  geom_sf(
    aes(fill = bi_class),
    color = "white",
    size = 0.1,
    show.legend = FALSE
  ) +
  bi_scale_fill(pal = "DkCyan", dim = 3) +
  theme_minimal() +
  labs(title = "Persons per housing unit and all-cause mortality rate (2020)") +
  bi_theme(base_size = 10) +
  theme(plot.title = element_text(size = 10))

# combine map with legend
census_2020_bimap <- cowplot::ggdraw() +
  cowplot::draw_plot(census_2020_bmap, 0, 0, 1, 1) +
  cowplot::draw_plot(legend, 0.7, 0.02, 0.3, 0.3)


census_2020_bimap