Skip to contents

The function queries a long format census data frame (censuskor) for specific administrative codes (if provided)

Usage

anycensus(
  year = 2020,
  codes = NULL,
  type = c("population", "housing", "tax", "mortality", "economy"),
  level = c("adm2", "adm1"),
  aggregator = sum,
  ...
)

Arguments

year

integer(1). One of 2010, 2015, or 2020.

codes

integer vector of admin codes (e.g. c(11, 26)) or character administrative area names (e.g. c("Seoul", "Daejeon")).

type

character(1). "population", "housing", "tax", "economy", or "mortality" Defaults to "population".

level

character(1). "adm1" for province-level or "adm2" for municipal-level. Defaults to "adm2".

aggregator

function to aggregate values when level = "adm1".

...

additional arguments passed to the aggregator function. (e.g., na.rm = TRUE).

Value

A data.frame object containing census data for the specified codes and year.

Note

Using characters in codes has a side effect of returning all rows in the dataset that match year and type.

Examples

# Query mortality data for adm2_code 21 (Busan)
anycensus(codes = 21, type = "mortality")
#> # A tibble: 16 × 9
#>     year adm1  adm1_code adm2         adm2_code type      `all causes_total_p1p`
#>    <int> <chr>     <dbl> <chr>            <dbl> <chr>                      <dbl>
#>  1  2020 Busan        21 Buk-gu           21080 mortality                   319.
#>  2  2020 Busan        21 Busanjin-gu      21050 mortality                   332.
#>  3  2020 Busan        21 Dong-gu          21030 mortality                   372.
#>  4  2020 Busan        21 Dongnae-gu       21060 mortality                   297.
#>  5  2020 Busan        21 Gangseo-gu       21120 mortality                   290.
#>  6  2020 Busan        21 Geumjeong-gu     21110 mortality                   322.
#>  7  2020 Busan        21 Gijang-gun       21310 mortality                   329.
#>  8  2020 Busan        21 Haeundae-gu      21090 mortality                   302.
#>  9  2020 Busan        21 Jung-gu          21010 mortality                   398.
#> 10  2020 Busan        21 Nam-gu           21070 mortality                   311.
#> 11  2020 Busan        21 Saha-gu          21100 mortality                   342.
#> 12  2020 Busan        21 Sasang-gu        21150 mortality                   363.
#> 13  2020 Busan        21 Seo-gu           21020 mortality                   395.
#> 14  2020 Busan        21 Suyeong-gu       21140 mortality                   294.
#> 15  2020 Busan        21 Yeongdo-gu       21040 mortality                   404.
#> 16  2020 Busan        21 Yeonje-gu        21130 mortality                   297.
#> # ℹ 2 more variables: `all causes_male_p1p` <dbl>,
#> #   `all causes_female_p1p` <dbl>

# Query population data for adm1 "Seoul" or "Daejeon"
anycensus(codes = c("Seoul", "Daejeon"), type = "housing", year = 2015)
#> # A tibble: 30 × 7
#>     year adm1    adm1_code adm2          adm2_code type   housing types_total_…¹
#>    <int> <chr>       <dbl> <chr>             <dbl> <chr>                   <dbl>
#>  1  2015 Daejeon        25 Daedeok-gu        25050 housi…                  58548
#>  2  2015 Seoul          11 Dobong-gu         11100 housi…                 100589
#>  3  2015 Daejeon        25 Dong-gu           25010 housi…                  73731
#>  4  2015 Seoul          11 Dongdaemun-gu     11060 housi…                  94464
#>  5  2015 Seoul          11 Dongjak-gu        11200 housi…                 107968
#>  6  2015 Seoul          11 Eunpyeong-gu      11120 housi…                 136848
#>  7  2015 Seoul          11 Gangbuk-gu        11090 housi…                  89911
#>  8  2015 Seoul          11 Gangdong-gu       11250 housi…                 114424
#>  9  2015 Seoul          11 Gangnam-gu        11230 housi…                 164864
#> 10  2015 Seoul          11 Gangseo-gu        11160 housi…                 173366
#> # ℹ 20 more rows
#> # ℹ abbreviated name: ¹​`housing types_total_cnt`

# Aggregate to adm1 level tax (province-level) using sum
anycensus(
  codes = c(11, 23, 31),
  type = "tax",
  year = 2020,
  level = "adm1",
  aggregator = sum,
  na.rm = TRUE
)
#> # A tibble: 3 × 6
#> # Groups:   year, type, adm1, adm1_code [3]
#>    year type  adm1        adm1_code income_general_mkr income_labor_mkr
#>   <int> <chr> <chr>           <dbl>              <dbl>            <dbl>
#> 1  2020 tax   Gyeonggi-do        31           12367363         14767906
#> 2  2020 tax   Incheon            23            1994065          2111882
#> 3  2020 tax   Seoul              11           20923255         24311772